

Faculty of Organizational Sciences

Application of CPS&IoT systems to assist people with disabilities

Prof. Dr. Andrej Škraba

Cybernetics & Decision Support Systems Laboratory

Wheelchair

- Cloud speech recognition applied in control of the wheelchairs for disabled persons
- Tight integration with Internet and its users, which continuously feed the database / possible to provide corrections
- Price, accuracy
- Drawbacks, such as latency
- Word error rate (WER CER)
- Technical difficulty to use cloud Application Programming Interface (API)
- More new cloud speech recognition services available
- Develop efficient algorithms, which will combine speech recognition results

Specification

- Prototyping
- Control the movement of the wheelchair with speech
- The principle of cloud harvesting should be applied
- In addition to speech, control should be possible via web-based GUI
- Remote monitoring and control.
- Real-time video streaming from the wheelchair platform
- Biomedical signals
- Provide uniform GUI with interactive graphics of main parameters.

Cyber-physical Systems & Internet of Things

- A cyber-physical system (CPS) is a mechanism controlled or monitored by computer-based algorithms, tightly integrated with internet and its users
- Internet of Things (IoT) is a subset of CPS where "physical" is omitted i.e. monitoring or providing an information (still in formulation)
- Today, informatics should not only measure but also listen, watch, interact with users, move, handle, grab etc.

Example of speech controlled device

- Application of speech recognition circuit
- Embeded logic
- Hard to adapt
- Self sufficient device

Example of speech controlled device (ver. 2)

• ... tightly integrated with internet and its users.

ARM / x86

Arduino

USER

SPEECH

USER INPUT

Example of speech controlled device (ver. 3) MONITORING, CONTROL & PROGRAMMING • ... applying FEEDBACK LOOP feedback principle EEDBACK LOOD SMART DEVICES (PHONES, TABLETS, GOOGLE CLOUD TVS, PCS (2)IBM USER WATSON BLUEMIX SPEECH USER INPUT CLOUD / ARM / x86 **IN TERNET** Arduino UTP WIFI × ROUTER

Software Stack

- node.js
- JavaScript / ECMAScript
- Firmata / Serial
- Ubuntu Linux
- Cloud Speech API
- Google & IBM Watson
- LEAP Motion SW Bundle

Transition Between States - Speech

 Different interpretations depending on the sequence of issued commands

Prototype realization 0

- ARM based solution GK802 quad core
- Speech controlled prototype: <u>https://youtu.be/Y4EI7IBTxQA</u>

Wheelchair Speech ×

C

2

192.168.1.110:8080

» Conter bookmarks

Apps ★ Bookmarks 🗀 Mini PC 🧰 RU 🗀 Uib

Speech input.

Full Scalled Prototype and Clinical Testing

https://youtu.be/FMjffyMWcKM?t=728

Comparison

Client and server side of a hybrid cloud/edge speech recognition ensemble system

Conditions

• In order for the procedure to be sucesfull it should hold:

$$f_2 = (a \land \neg b) \lor (\neg a \land b)$$

• For three paralel systems:

$$f_3 = (a \land \neg b \land \neg c) \lor (\neg a \land b \land \neg c) \lor (\neg a \land \neg b \land c)$$

• With CER when multiple clouds are harvested (+ latency etc.):

$$CER_m = \prod_{i=1}^n CER_i$$

Speech-to-command cloud harvesting algorithm

A1:	get user speech input
A2:	seed speech to the speech-recognition cloud field APIs
A3:	harvest set of interim transcripts and timestamps from cloud field
A4:	if $C_w > C_t$ add interim transcript to the Cloud _i command subset
A5:	create unique union set of words for particular command from Cloud _i command subset
A6:	check for pairwise disjoint condition for all unique union sets: $A_i \cap A_j \equiv \emptyset$; $i \neq j$
A7:	if condition not met erase word pair
A8:	order checked unique union set by interim transcript timestamp
A9:	execute command with lowest timestamp

CER Measurement

- Testing 20 subjects
- Using poligon setup

 $CER = \frac{C_f}{No}$

Algorithms

- Improve CER with table of substitutions
- Harvesting the clouds with corrections
- Application and automatic generation of substitution tables

N substitution tables:

$$A_1, A_2, A_3, \dots, A_n,$$

Pairwise disjoint

 $A_j \equiv \emptyset ; i \neq j$

Streaming pulse data from Wheelchair

- NODEMCU ESP8266 module
- Less components and
- Directly connected to the Wi-Fi
- Sensor data processing is performed on the ESP8266
- Transmitted over Wi-Fi WebSocket to the cloud
- Additional data processing on the client side with JavaScript / ECMA Script

Average Energy Consumption

Run	N	AVG [#c.]	SD	Ν	AVG [min]	SD	N	AVG [W∙s]	SD
1 st	14	33.0	14.12	13	3.70	0.93	14	4875.79	1577.27
2 nd	14	21.7	9.16	13	3.03	0.79	14	3742.50	1999.96
3 rd	14	19.6	8.40	13	2.77	0.74	14	3606.64	1627.24

Learning effect

Harvesting Google & IBM Watson

					CER of		
Run	No. of issued comm.	Ν	CER of	CER of IBM	Google &	Google	Watson
			Google API	Watson	IBM	CER	CER
			alone	API alone	Watson	improvem	improvem
			(CERg)	(CERw)	combined	ent	ent
					(CERgw)		
1 st	490	20	0.11	0.27	0.03	8%	24%
2 nd	340	20	0.11	0.14	0.02	8%	11%
3 rd	274	20	0.12	0.22	0.03	8%	19%

Improvement

AI & CPS&IoT

- Application of artificial brain new possibilities that should be explored
- Example of the interaction with OpenAI LLM API at the process of generating innovative ideas
- json as the main data structure
- Fast development doi: <u>https://doi.org/10.3390/make5040065</u>

Discussion I

- New technologies enable us to develop complex cyber-physical systems based on cloud information systems and edge computing - prototyping
- An important characteristic of cyber-physical systems is that they are tightly integrated with the internet and its users.
- The new paradigm of complex cyber-physical systems development.
- Backed up by edge computing
- From a technical point of view, it is beneficial that several independent cloud service providers exist
- Successfully tested by different users in a clinical environment
- Significant improvements in the CER that correspond to the proposed theoretical model
- JavaScript/ECMA Script & node.js

Conclusion (II.)

- Currently technology "in demand", large interest
- Affordability of the technology, also regarding previous knowledge
- Practical application possible in several areas
- Possibility of innovative solutions
- Incorporation in the standard curriculum when addressing control systems, models, state space

Conclusion (III.)

- node.js, JavaScript, C++
- firmata, serial
- Exploration of the Cloud(s), development of algorithms
- Linux
- ESP8266
- ESP32
- Possibility to develop from prototype to full application
- Succesfull development of several prototypes
- Changing learning and technical system design paradigm

Acknowledgement

• This work was supported in part by the Slovenian Research Agency (ARRS) (Research program "Decision support systems in electronic commerce", program No.: UNI-MB-0586-P5-0018), ARRS SI-RF bilateral project "Efficient Control of Cyber-physical Systems & Internet of Things by the Application of Evolutionary and Biologically Inspired Algorithms" Proj. No.: BI-RU/16-18-040, ARRS SI-MNE bilateral project "Development of Speech Controlled Wheelchair for Disabled Persons as Cyber-Physical System" Proj. No.: BI-ME/16-17-022, Proj. NRP No: 3330-22-3515, NOO No: C3330-22-953012 and Erasmus+ Project: 2021-1-MK01-KA220-HED-000027646.